معادلات انتگرال آشوبگونه
پایان نامه
- دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم
- نویسنده رضا فیروزدر
- استاد راهنما مجید امیرفخریان محمد علی فریبرزی عراقی
- سال انتشار 1391
چکیده
در بسیاری از مسائل طبیعی به معادلات دیفرانسیل و معادلات انتگرال برخورد می کنیم. بسیاری از این معادلات به دلیل ساختار طبیعی و سازگار پذیری که دارند معمولا در حالت آشوبگونه قرار می گیرند. لذا بررسی مدل اینگونه معادلات امروزه از اهمیت بسیار زیادی برخوردار است. در این پایان نامه به بررسی معادلات انتگرال آشوبگونه با تغییر پارامتر ضریب می پردازیم. در این راستا برای حل عددی معادلات انتگرال اقدام به استفاده از روش تقریب تابع مجهول y(x) در نقات کالکیشن نموده ایم. جهت مقدمه اقدام تعریف مفاهیم لازم برای معادلات انتگرال و سپس توضیح مختصری در زمینه مفهوم نظریه آشوب نموده ایم. در این راستا به بررسی معادلات دیفرانسیل آشوبگونه و کنترل آن با استفاده از روش آرایه ای پرداختیم.
منابع مشابه
حل معادلات دیفرانسیل و انتگرال با توابع والش
هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...
متن کاملحل معادلات دیفرانسیل و انتگرال با توابع والش
هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...
متن کاملبهکارگیری موجک چبیشف نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم
در این مقاله، حل عددی معادلات انتگرال فردهلم فازی نوع دوم با بهکارگیری موجک چبیشف نوع دوم را مورد بررسی قرار میدهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگیهای اولیه موجک چبیشف نوع دوم، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دوم، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی مینماییم. سپس با بهکارگیری موجک چبیشف نوع دوم و به...
متن کاملتحلیل ارتعاشی نانو تیر مگنتو الکترو الاستیک تیموشنکو با مدل معادلات انتگرال-دیفرانسیل
در دهۀ گذشته ارهاتعاش نانو تیرهای پیزوالکتریک و پیزومغناطیس مورد توجه پژوهشگران بوده است. عموما علاوه بر میدانهای جابجایی، میدانهای الکترومغناطیس نیز بدلیل کوچک بودن نسبت عرض به طول هندسه تیر، بصورت یک بعدی در نظر گرفته میشود. این امر اعمال شرایط مرزی الکترومغناطیسی بر وجوه بالایی و پایینی تیر را دشوار میسازد. در این مطالعه ارتعاش آزاد تیر تیموشنکو دارای خواص مگنتو‑الکترو‑الاستیک با در ...
متن کاملحل معادلات انتگرال فردهلم با استفاده از توابع چندمقیاسی برنشتاین
در این مقاله، روش های عددی کارا برای پیدا کردن جواب معادلات انتگرال فردهلم خطی و غیرخطی نوع دوم بر اساس پایه توابع چند مقیاسی برنشتاین ارائه می شوند. در ابتدا، ویژگی های این توابع که به صورت ترکیب خطی از توابع بلاک پالس بر بازۀ (1، 0] و چندجمله ای های برنشتاین هستند به همراه ماتریس عملیاتی دوگان آن ها ارائه می شوند. سپس از این ویژگی ها برای تبدیل معادلۀ انتگرال مورد نظر به معادله ای ماتریسی هم...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023